Mathematics Ist notes

Module NameDownloadDescriptionDownload Size
Module-1 Real Numbers, Functions, Sequences of realsLecture 1 : Real Numbers, Functions [ Section 1.1 : Real Numbers ]Lecture Notes -pdf215 kb
Module-1 Real Numbers, Functions, Sequences of realsLecture 2 : Convergent & Bounded SequencesLecture Notes140 kb
Module-1 Real Numbers, Functions, Sequences of realsLecture 3 : Monotone Sequence and Limit theoremLecture Notes203 kb
Module-2 Limits and Continuity of FunctionsLecture 4 : Limit at a pointLecture Notes196 kb
Module-2 Limits and Continuity of FunctionsLecture 5 : ContinuityLecture Notes153 kb
Module-2 Limits and Continuity of FunctionsLecture 6 : Properties of Continuous FunctionsLecture Notes137 kb
Module-3 Differentiation and Mean Value TheoremsLecture 7 : DifferentiationLecture Notes58 kb
Module-3 Differentiation and Mean Value TheoremsLecture 8 : Chain RuleLecture Notes214 kb
Module-3 Differentiation and Mean Value TheoremsLecture 9 : Roll\\\'s theorem and Mean Value TheoremLecture Notes311 kb
Module-4 Local / Global Maximum / Minimum and Curve SketchingLecture 10 : Sufficient conditions for increasing / decreasingLecture Notes186 kb
Module-4 Local / Global Maximum / Minimum and Curve SketchingLecture 11 : Absolute Maximum / MinimumLecture Notes464 kb
Module-4 Local / Global Maximum / Minimum and Curve SketchingLecture 12 : AsymptoesLecture Notes228 kb
Module-5 Linear and Quadratic Approximations,Newton and Picard MethodsLecture 13 : Linear ApproximationsLecture Notes152 kb
Module-5 Linear and Quadratic Approximations,Newton and Picard MethodsLecture 14 : Taylor\\\'s TheoremLecture Notes178 kb
Module-5 Linear and Quadratic Approximations,Newton and Picard MethodsLecture 15 : Newton\\\'s methodLecture Notes184 kb
Module-6 Definition of IntegralLecture 16 : Integral from upper and lower sumsLecture Notes330 kb
Module-6 Definition of IntegralLecture 17 : Fundamental theorem of calculusLecture Notes200 kb
Module-6 Definition of IntegralLecture 18 : Approximating Integral : Trapezoidal RuleLecture Notes227 kb
Module-7 Applications of Integration - ILecture 19 : Definition of the natural logarithmic functionLecture Notes157 kb
Module-7 Applications of Integration - ILecture 20 : Definition of the power function and logarithmic function with positive baseLecture Notes175 kb
Module-7 Applications of Integration - ILecture 21 : Relative rate of growth of functionsLecture Notes284 kb
Module-8 Applications of Integration - IILecture 22 : Arc Length of a Plane CurveLecture Notes196 kb
Module-8 Applications of Integration - IILecture 23 : Area of Surface of revolutionLecture Notes248 kb
Module-8 Applications of Integration - IILecture 24 : Volume of solids of revolution by washer methodLecture Notes371 kb
Module-9 Infinite Series, Absolute and Conditional Convergence, Taylor and MaclaurinLecture 25 : Series of numbersLecture Notes183 kb
Module-9 Infinite Series, Absolute and Conditional Convergence, Taylor and MaclaurinLecture 26 : Absolute convergenceLecture Notes197 kb
Module-9 Infinite Series, Absolute and Conditional Convergence, Taylor and MaclaurinLecture 27 : Series of functionsLecture Notes251 kb
Module-10 Scaler fields, Limit and ContinuityLecture 28 : Series of functionsLecture Notes235 kb
Module-10 Scaler fields, Limit and ContinuityLecture 29 : Limit of scaler fieldsLecture Notes189 kb
Module-10 Scaler fields, Limit and ContinuityLecture 30 : Continuity of scaler fieldsLecture Notes161 kb
Module-11 Partial derivatives, Chain rules, Implicit differentiation, Directional derivativesLecture 31 : Partial derivativesLecture Notes202 kb
Module-11 Partial derivatives, Chain rules, Implicit differentiation, Directional derivativesLecture 32 : Chain rulesLecture Notes202 kb
Module-11 Partial derivatives, Chain rules, Implicit differentiation, Directional derivativesLecture 33 : Implicit differentiationLecture Notes72 kb
Module-12 Total differential, Tangent planes and normalsLecture 34 : Gradient of a scaler fieldLecture Notes166 kb
Module-12 Total differential, Tangent planes and normalsLecture 35 : Tangent plane and normalLecture Notes171 kb
Module-12 Total differential, Tangent planes and normalsLecture 36 : Mean value theorem and LinearizationLecture Notes97 kb
Module-13 Maxima, Minima and Saddle Points, Constrained maxima and minimaLecture 37 : Maxima and MinimaLecture Notes128 kb
Module-13 Maxima, Minima and Saddle Points, Constrained maxima and minimaLecture 38 : Second derivative test for local maxima / minima & saddle pointsLecture Notes70 kb
Module-13 Maxima, Minima and Saddle Points, Constrained maxima and minimaLecture 39 : Absolute maxima / minimaLecture Notes215 kb
Module-14 Double Integrals, Applilcations to Areas and Volumes Change of variablesLecture 40 : Double integrals over rectangular domainsLecture Notes449 kb
Module-14 Double Integrals, Applilcations to Areas and Volumes Change of variablesLecture 41 : Triple integralsLecture Notes254 kb
Module-14 Double Integrals, Applilcations to Areas and Volumes Change of variablesLecture 42 : Change of variablesLecture Notes294 kb
Module-15 Vector fields, Gradient, Divergence and CurlLecture 43 : Vector fields and their propertiesLecture Notes191 kb
Module-15 Vector fields, Gradient, Divergence and CurlLecture 44 : Gradient Divergence and CurlLecture Notes3 kb
Module-15 Vector fields, Gradient, Divergence and CurlLecture 45 : Curves in spaceLecture Notes230 kb
Module-16 Line Integrals, Conservative fields Green's Theorem and applicationsLecture 46 : Line integralsLecture Notes279 kb
Module-16 Line Integrals, Conservative fields Green's Theorem and applicationsLecture 47 : Fundamental Theorems of Calculus for Line integralsLecture Notes339 kb
Module-16 Line Integrals, Conservative fields Green's Theorem and applicationsLecture 48 : Green\\\'s TheoremLecture Notes308 kb
Module-17 Surfaces, Surface Area, Surface integrals, Divergence Theorem and applicationsLecture 49 : Surfaces and parameterizationsLecture Notes489 kb
Module-17 Surfaces, Surface Area, Surface integrals, Divergence Theorem and applicationsLecture 50 : Surface IntegralsLecture Notes318 kb
Module-17 Surfaces, Surface Area, Surface integrals, Divergence Theorem and applicationsLecture 51 : Divergence theoremLecture Notes286 kb
Module-18 Stokess theorem and applicationsLecture 52 : Orienting the boundary of an orientable surfaceLecture Notes182 kb
Module-18 Stokess theorem and applicationsLecture 53 : Stokes\\\' theorem for general domainsLecture Notes168 kb
Module-18 Stokess theorem and applicationsLecture 54 : Application of Stokes\\\' theoremLecture Notes140 kb

No comments:

Post a Comment